
Serial Input PLL with 2.5-GHz Prescaler

Features

- Operating voltage 2.7V to 5.5V
- Operating frequency: up to 2.5 GHz with prescaler ratios of 32/33 and 64/65
- · Lock detect feature
- · Power-down mode
- 20-pin TSSOP (Thin Shrink Small Outline Package)

Applications

- Wireless LAN
- · Wireless communication handsets
- Base Stations
- Microcells

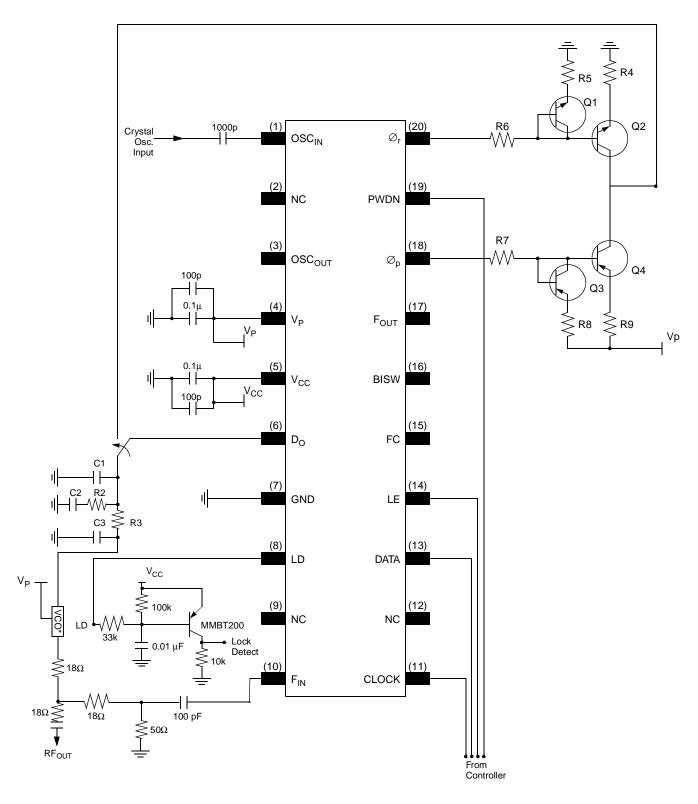


Figure 1. Application Diagram Example - CYW2325 2.5-GHz PLL

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description
OSC_IN	1	I	Oscillator Input: This input has a V _{CC} /2 threshold and CMOS logic level sensitivity.
NC	2		No Connect
OSC_OUT	3	0	Oscillator Output
V _P	4	Р	Charge Pump Rail Voltage: This supply for charge pump. Must be > V _{CC} .
V _{CC}	5	Р	Power Supply Connection for PLL: When power is removed from V _{CC} all latched data is lost.
D _O	6	0	Charge Pump Output: The phase detector gain is $I_P/2\pi$. Sense polarity can be reversed by setting FC LOW (pin 15).
GND	7	G	Analog and Digital Ground Connection: This pin must be grounded.
LD	8	0	Lock Detect Pin: This output is HIGH with narrow LOW pulses when the loop is locked.
NC	9		No Connect
F _{IN}	10	I	Input to Prescaler: Maximum frequency 2.5 GHz.
CLOCK	11	Ī	Data Clock Input: One bit of data is loaded into the Shift Register on the rising edge of this signal.
NC	12		No Connect
DATA	13	I	Serial Data Input
LE	14	I	Load Enable: On the rising edge of this signal, the data stored in the Shift Register is latched into the counters and configuration controls.
F _C	15	I	Phase Sense Control for Phase Detector with Internal Pull-up: When pulled LOW, the polarity of the Phase Detector is reversed.
BISW	16	0	Analog Switch Output: Connects to output of charge pump when LE is HIGH.
F _{OUT}	17	0	Monitor Point for Phase Detector Input
\varnothing_{P}	18	0	External Charge Pump Output: Open drain N-Channel FET, pull-up resistor required.
PWDN	19	I	Power Down Pin with Internal Pull-up: When pin is HIGH, device is in normal state. When pin is LOW, device is in power-down mode. When device enters power-down mode the charge pump is in the three-state condition.
\varnothing_{R}	20	0	External Change Pump: (CMOS logic output).

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating

only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Parameter	Description	Rating	Unit
V _{CC} or V _P	Power Supply Voltage	-0.5 to +6.5	V
V _{OUT}	Output Voltage	-0.5 to V _{CC} +0.5	V
I _{OUT}	Output Current	±15	mA
T _L	Lead Temperature	+260	°C
T _{STG}	Storage Temperature	-55 to +150	°C

Handling Precautions

Devices should be transported and stored in antistatic containers.

These devices are static sensitive. Ensure that equipment and personnel contacting the devices are properly grounded.

Cover workbenches with grounded conductive mats.

Always turn off power before adding or removing devices from system.

Protect leads with a conductive sheet when handling or transporting PC boards with devices.

If devices are removed from the moisture protective bags for more than 36 hours, they should be baked at 85 °C in a moisture free environment for 24 hours prior to assembly in less than 24 hours.

Recommended Operating Conditions

Parameter	Description	Test Condition	Rating	Unit
V _{CC}	Power Supply Voltage		2.7 to 5.5	V
V_{P}	Charge Pump Voltage		V _{CC} to +5.5	V
T _A	Operating Temperature	Ambient air at 0 CFM flow	-40 to +85	°C

Electrical Characteristics: $V_{CC} = 3.0V$, $V_P = 3.0V$, $T_A = -40$ °C to +85°C, Unless otherwise specified

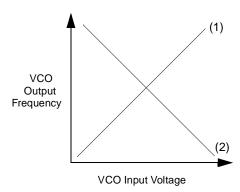
Power Supply Current						Ī
		V_{CC}		8		mA
Power-down Current	Power-down, V _{CC} = 3.0V	V _{CC}		6	100	μΑ
Maximum Operating Frequency		F _{IN}	2.5			GHz
Oscillator Input Frequency	No load on OSC_OUT	OSC_IN	2		60	MHz
	With OSC_OUT loaded		2		25	MHz
Maximum Phase Detector Frequency			10			MHz
Input Sensitivity	V _{CC} = 2.7V	F _{IN}	-15		4	dBm
	V _{CC} = 5.5V		-10		4	dBm
Oscillator Input Sensitivity		OSC_IN	0.5			V_{P-P}
Oscillator Input Current			-100		100	μΑ
High Level Input Voltage	V _{CC} = 5.0V	DATA,	V _{CC} * 0.8			V
Low Level Input Voltage					V _{CC} * 0.3	V
High Level Input Current			-10	1	10	μΑ
Low Level Input Current			-10	1	10	μΑ
High Level Output Voltage		F _O /LD	2.2			V
Low Level Output Voltage					0.4	V
ID _O , Source Current	$V_P = 3.0V, VD_O = V_P/2$	D _O		-3.2		mA
	$V_P = 5.0V, VD_O = V_P/2$			-3.8		mΑ
IDO High, Sink Current	$V_P = 3.0V, VD_O = V_P/2$	D _O		3.2		mA
	$V_P = 5.0V, VD_O = V_P/2$	1		3.8		mΑ
ID _O Charge Pump Sink and Source Mismatch	$VD_O = V_P/2$ $[IID_{O(SI)}I - IID_{O(SO)}I]/$ $[1/2*{IID_{O(SI)}]I + IID_{O(SO)}I}]*100%$			5		%
Charge Pump Current Variation vs. Temperature	-40 °C <t<85°c, <math="">V_{DO} = V_P/2^{[1]}</t<85°c,>			5		%
Charge Pump High- Impedance Leakage Current				±2		nA
	Maximum Operating Frequency Oscillator Input Frequency Maximum Phase Detector Frequency Input Sensitivity Oscillator Input Sensitivity Oscillator Input Current High Level Input Voltage Low Level Input Current Low Level Input Current High Level Output Voltage Low Level Output Voltage IDO, Source Current IDO High, Sink Current IDO Charge Pump Sink and Source Mismatch Charge Pump Current Variation vs. Temperature Charge Pump High- Impedance Leakage	$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	$\begin{tabular}{l lllllllllllllllllllllllllllllllllll$	$ \begin{array}{ c c c c c } \hline \text{Maximum Operating} \\ \hline \text{Frequency} \\ \hline \\ \hline \text{Oscillator Input Frequency} \\ \hline \\ $	$ \begin{array}{ c c c c c } \hline \text{Maximum Operating} \\ \hline \text{Frequency} \\ \hline \text{Oscillator Input Frequency} \\ \hline \text{Oscillator Input Frequency} \\ \hline \\ \hline \text{Oscillator Input Frequency} \\ \hline \\ \hline \text{Maximum Phase Detector} \\ \hline \text{Frequency} \\ \hline \\ \hline \text{Input Sensitivity} \\ \hline \\ \hline \\ \hline \text{Oscillator Input Sensitivity} \\ \hline \\ \hline \text{Oscillator Input Sensitivity} \\ \hline \\ \hline \text{Oscillator Input Current} \\ \hline \\ \hline \text{High Level Input Voltage} \\ \hline \text{Low Level Input Voltage} \\ \hline \text{Low Level Input Current} \\ \hline \hline \text{High Level Output Voltage} \\ \hline \hline \text{Low Level Output Voltage} \\ \hline \hline \text{Low Level Output Voltage} \\ \hline \hline \text{Low Level Output Voltage} \\ \hline \hline \text{ID}_{O}, \text{ Source Current} \\ \hline \hline \text{ID}_{O}, \text{ Source Current} \\ \hline \hline \text{ID}_{O} \text{ High, Sink Current} \\ \hline \hline \text{ID}_{O} \text{ Charge Pump Sink} \\ \text{and Source Mismatch} \\ \hline \hline \text{Charge Pump Current} \\ \hline \hline \text{Variation vs. Temperature} \\ \hline \hline \text{Charge Pump High-} \\ \hline \hline \text{Impedance Leakage} \\ \hline \hline \\ \hline \text{No load on OSC_OUT} \\ \hline \text{With OSC_OUT} \\ \hline \text{With OSC_OUT loaded} \\ \hline \text{Voloded} \\ \hline Volode$	Maximum Operating Frequency

Note:

^{1.} ID_OVS T; Charge pump current variation vs. temperature. [IID_{O(SI)@T}I – IID_{O(SI)@25°C}I]/IID_{O(SI)@25°C}I * 100% and [IID_{O(SO)@T}I – IID_{O(SO)@25°C}I]/IID_{O(SO)@25°C}I *100%.

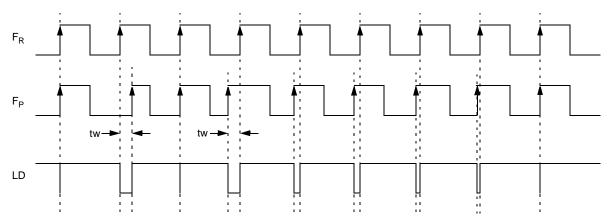
Timing Waveforms

Phase Characteristics

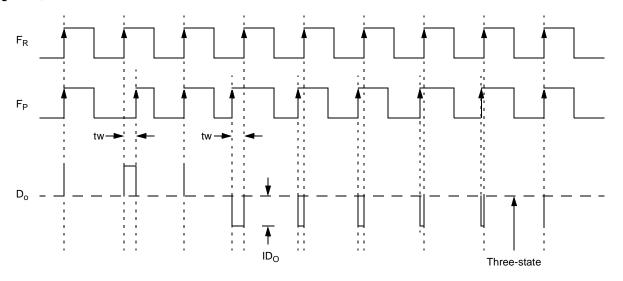

For normal operation, the FC pin is used to select the output polarity of the phase detector. Both the internal and any external charge pump are affected.

Depending upon VCO characteristics, FC pin should be set accordingly:

When VCO characteristics are like (1), FC should be set HIGH or OPEN CIRCUIT:

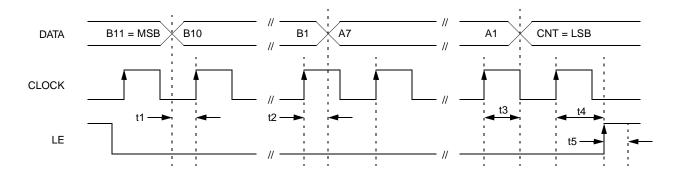

When VCO characteristics are like (2), FC should be set LOW.

When FC is set HIGH or OPEN CIRCUIT, F_{out} pin is set to the reference divider output, F_r When FC is set LOW, F_{out} pin is set to the programmable divider output F_p .



Phase Comparator Sense

Phase Detector Output Waveform



DO Charge Pump Output Current Waveform

Timing Waveforms (continued) Serial Data Input Timing Waveform $^{[2,\;3,\;4,\;5]}$

Serial Data Input

Data is input serially using the DATA, CLOCK, and LE pins. Two control bits direct data into the locations given in Table 1.

Table 1. Control Configuration

CNT	Function
1	Reference Counter: R = 3 to 16383, set prescaler ratio PRE =0:64/65, PRE=1:32/33
0	Program Counter: A = 0 to 63, B = 3 to 2047

Table 2. Shift Register Configuration^[6]

				ogu														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Refere	ence (Counte	er and	Config	uratio	n Bits												
CNT	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	PRE			
Progra	Programmable Counter Bits																	
CNT	A1	A2	A3	A4	A5	A6	A7	B1	B2	В3	B4	B5	В6	В7	B8	В9	B10	B11
Bit(s)	Name	•	Funct	tion														
CNT			Conti	rol Bit:	Direct	s prog	rammir	ig data	to refe	erence	or prog	gramma	able co	unters.				
R1–R′	14		Refer	ence (Counte	r Sett	ing Bit	s: 14 b	its, R =	= 3 to 1	6383.[7]						
PRE			Preso	caler D	ivide E	Bit: LO	W = 64	l/65 an	d HIGI	H = 32/	33.							
A1-A7	7		Swall	low Co	unter	Divide	Ratio.	: A = 0	to 63.									
B1-B1	11	Programmable Counter Divide Ratio: B = 3 to 2047. ^[7]																

- ss:
 t1-t5 = 50 μs > t > 0.5 μs.
 CLOCK may remain HIGH after latching in data.
 DATA is shifted in with the MSB first.
 For DATA definitions, refer to *Table 2*.
 The MSB is loaded in first.
 Low count ratios may violate frequency limits of the phase detector.

Table 3. 7-Bit Swallow Counter (A) Truth Table [8]

Divide Ratio A	A7	A6	A5	A4	А3	A2	A1
0	X	0	0	0	0	0	0
1	Х	0	0	0	0	0	1
:::	Х	:::	:::	:::	:::	:::	:::
62	Х	1	1	1	1	1	0
63	Х	1	1	1	1	1	1

Table 4. 11-Bit Programmable Counter (B) Truth Table [9]

Divide Ratio B	B11	B10	В9	B8	B7	В6	B5	B4	В3	B2	B1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::
2046	1	1	1	1	1	1	1	1	1	1	0
2047	1	1	1	1	1	1	1	1	1	1	1

Table 5. 14-Bit Programmable Reference Counter Truth Table^[9]

Divide Ratio R	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::
16382	1	1	1	1	1	1	1	1	1	1	1	1	1	0
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Ordering Information^[10]

Ordering Code	Package Name	Package Type	TR
CYW2325	ZI	20-pin TSSOP (0.173" wide)	Tape and Reel Option

Notes:

8. B is greater than or equal to A.
9. Divide ratio less than 3 is prohibited. The divide ratio can be calculated using the following equation:

 $fvco = \{(P * B) + A\} * fosc / R where (A \le B)$

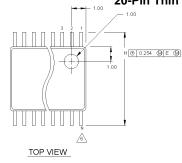
fvco: Output frequency of the external VCO. fosc: The crystal reference oscillator frequency.

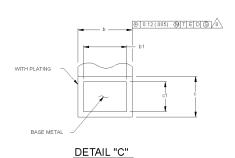
A: Preset divide ratio of the 7-bit swallow counter.

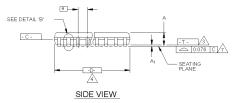
B: Preset ratio of the 11-bit programmable counter (3 to 2047). P: Preset divide ratio of the dual modulus prescaler.

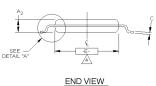
R: Preset ratio of the 15-bit programmable reference counter (3 to 16383).

The divide ratio N = (P * B) + A.


10. Operating temperature range: -40°C to +85°C.

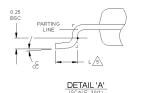

Document #: 38-00920


Package Diagram


20-Pin Thin Shrink Small Outline Package (TSSOP, 0.173" wide)

(SEE NOTE 9)

NOTES:


- DIE THICKNESS ALLOWABLE IS 0.279±0.0127 (.0110±.0005 INCHES) DIMENSIONING & TOLERANCES PER ANSI.Y14.5M-1982.
- **DIS A REFERENCE DATUM.

 **DIS A REFERENCE DATUMS AND DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS, AND ARE MEASURED AT THE PARTING LINE, MOLD FLASH OR DEMONSION IS THE LEND FLASH OF TEMPORAL PROTRUSIONS THE LEND TO A SUBSTRUCT OF TEMPORAL PROTRUSIONS ARE SHOWN FOR REFERENCE ONLY.

 **TORMINAL POSITIONS ARE SHOWN FOR REFERENCE ONLY.

 **ONE AND THE WITHING THE PARTING ONLY THE PROTRUSION OF T
- TERMINAL POSITIONS ARE SHOWN FOR REFERENCE ONLY. FORMED LEADS SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHING SHAPE.

 FINE LEAD WITHIN BOTROM FOR SHAPE THE LEAD WITH DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLO WABLE DAMBAR POTRUSION SHALL BE OSSIMIT DATA IN EXCESS OF THE LEAD WITH DIMENSION AT MAVAMOM MATERIAL CONDITION, DAMBAR CANNOT BE SHAPE SHA

Physical Dimensions In Millimeters 20 Lead (0.173" Wide) TSSOP Package Order Number X 20" clear antistatic tubes, 76 units/tube JEDEC Outline MO-153

THIS TABLE IN MILLIMETERS

S		соммо	V		NOTE		4		6
M B		MENSIO		No _{TE}			Ď		Ň
2	MIN.				ATIONS	MIN.	NOM.	MAX.	
Α			1.10		AA	2.90	3.00	3.10	8
A ₁	0.05	0.10	0.15		AB	4.90	5.00	5.10	14
A ₂	0.85	0.90	0.95		AC	4.90	5.00	5.10	16
b	0.19	-	0.30	8	AD	6.40	6.50	6.60	20
b1	0.19	0.22	0.25		AE	7.70	7.80	7.90	24
С	0.090	-	0.20		AF	9.60	9.70	9.80	28
c1	0.090	0.127	0.135						
D	SEE	VARIATION	IS	4					
Е	4.30	4.40	4.50	4					
е		0.65 BSC							
Н	6.25	6.40	6.50						
L	0.50	0.60	0.70	5					
N &	SEE VARIATIONS			6					
oc	0°	0° 4° 8°							

THIS TABLE IN INCHES

S		COMMO	N		NOTE		4		6
M B	DI	MENSIO	NS	N _O	VARI-		D		N
1 %	MIN.	NOM.	MAX.	T _E	ATIONS	MIN.	NOM.	MAX.	
Α			.0433		AA	.114	.118	.122	8
A ₁	.002	.004	.006		AB	.193	.197	.201	14
Α₂	.0335	.0354	.0374		AC	.193	.197	.201	16
b	.0075	-	.0118	8	AD	.252	.256	.260	20
b1	.0075	.0087	.0098		AE	.303	.307	.311	24
С	.0035	-	.0079		AF	.378	.382	.386	28
c1	.0035	.0050	.0053						
D	SEE	VARIATION	is	4					
E	.169	.173	.177	4					
е		.0256 BSC							
Н	.246	.252	.256						
L	.020	.024	.028	5					
Ŋ	SEE VARIATIONS			6					
οĉ	0°	4°	8°						

VARIATION AF IS DESIGNED BUT NOT TOOLED